Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 390
Filtrar
1.
Orphanet J Rare Dis ; 19(1): 160, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609989

RESUMO

BACKGROUND: Primary periodic paralysis (PPP) is an inherited disorders of ion channel dysfunction characterized by recurrent episodes of flaccid muscle weakness, which can classified as hypokalemic (HypoPP), normokalemic (NormoPP), or hyperkalemic (HyperPP) according to the potassium level during the paralytic attacks. However, PPP is charactered by remarkable clinical and genetic heterogeneity, and the diagnosis of suspected patients is based on the characteristic clinical presentation then confirmed by genetic testing. At present, there are only limited cohort studies on PPP in the Chinese population. RESULTS: We included 37 patients with a clinical diagnosis of PPP. Eleven (29.7%) patients were tested using a specific gene panel and 26 (70.3%) by the whole-exome sequencing (WES). Twenty-two cases had a genetic variant identified, representing a diagnostic rate of 59.5% (22/37). All the identified mutations were either in the SCN4A or the CACNA1S gene. The overall detection rate was comparable between the panel (54.5%: 6/11) and WES (61.5%: 16/26). The remaining patients unresolved through panel sequencing were further analyzed by WES, without the detection of any mutation. The novel atypical splicing variant c.2020-5G > A affects the normal splicing of the SCN4A mRNA, which was confirmed by minigene splicing assay. Among 21 patients with HypoPP, 15 patients were classified as HypoPP-2 with SCN4A variants, and 6 HypoPP-1 patients had CACNA1S variants. CONCLUSIONS: Our results suggest that SCN4A alleles are the main cause in our cohort, with the remainder caused by CACNA1S alleles, which are the predominant cause in Europe and the United States. Additionally, this study identified 3 novel SCN4A and 2 novel CACNA1S variants, broadening the mutation spectrum of genes associated with PPP.


Assuntos
Paralisia Periódica Hipopotassêmica , Distrofias Musculares , Humanos , Paralisia Periódica Hipopotassêmica/genética , Alelos , Paralisia , China , Canal de Sódio Disparado por Voltagem NAV1.4/genética
2.
Prenat Diagn ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647204

RESUMO

OBJECTIVE: To establish a haplotype-based noninvasive prenatal testing (NIPT) workflow for single-gene recessive disorders that adapt to dizygotic (DZ) twin pregnancies. METHOD: Twin pregnancies at risk of Duchenne muscular dystrophy, Becker muscular dystrophy, hemophilia B, spinal muscular atrophy, phenylketonuria, and nonsyndromic hearing loss were recruited. For subsequent analysis, capture sequencing targeting highly heterozygotic single nucleotide polymorphism sites was conducted. Paternal-specific alleles were used to calculate the total and individual fetal fractions and determine zygosity. A two-step Bayes Factor model was applied to clarify the complex genomic landscape in the maternal plasma: the first step involved determining whether the twins inherited the same haplotype, and the second step involved estimating their individual genotypes. NIPT results were subsequently confirmed by invasive diagnosis. RESULTS: Nine twin pregnancies were recruited, including five DZ and four monozygotic (MZ) twins. The earliest gestational age was 8+0 weeks, and the minimum fetal fraction was 4.6%. Three twin pregnancies were reported with one affected fetus, while the remaining six were reported without affected fetuses. Two dichorionic diamniotic twin pregnancies were confirmed to be MZ twins. The NIPT results were 100% consistent with those of invasive procedures or diagnostic genetic testing after birth. CONCLUSION: This study is the first to perform NIPT for single-gene disorders in twin pregnancies and preliminarily confirm its clinical feasibility. Acknowledging the twins' genotypes in the first trimester is valuable as it empowers obstetric care providers and parents to have adequate time for pregnancy management and decision-making.

3.
Colloids Surf B Biointerfaces ; 237: 113834, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479259

RESUMO

Precise diagnosis of complex and soft tumors is challenging, which limits appropriate treatment options to achieve desired therapeutic outcomes. However, multifunctional nano-sized contrast enhancement agents based on nanoparticles improve the diagnosis accuracy of various diseases such as cancer. Herein, a facile manganese-hafnium nanocomposites (Mn3O4-HfO2 NCs) system was designed for bimodal magnetic resonance imaging (MRI)/computed tomography (CT) contrast enhancement with a complimentary function of photodynamic therapy. The solvothermal method was used to fabricate NCs, and the average size of Mn3O4 NPs and Mn3O4-HfO2 NCs was about 7 nm and 15 nm, respectively, as estimated by TEM. Dynamic light scattering results showed good dispersion and high negative (-33 eV) zeta potential, indicating excellent stability in an aqueous medium. Mn3O4-HfO2 NCs revealed negligible toxic effects on the NCTC clone 929 (L929) and mouse colon cancer cell line (CT26), demonstrating promising biocompatibility. The synthesized Mn3O4-HfO2 NCs exhibit significant enhancement in T1-weighted magnetic resonance imaging (MRI) and X-ray computed tomography (CT), indicating the appropriateness for dual-modal MRI/CT molecular imaging probes. Moreover, ultra-small Mn3O4-HfO2 NCs show good relaxivities for MRI/CT. These nanoprobes Mn3O4-HfO2 NCs further possessed outstanding reactive oxygen species (ROS) generation ability under minute ultraviolet light (6 mW·cm-2) to ablate the colon cancer cells in vitro. Therefore, the designed multifunctional Mn3O4-HfO2 NCs were ideal candidates for cancer diagnosis and photodynamic therapy.


Assuntos
Neoplasias do Colo , Nanocompostos , Nanopartículas , Fotoquimioterapia , Camundongos , Animais , Manganês , Háfnio , Imageamento por Ressonância Magnética , Tomografia Computadorizada por Raios X , Neoplasias do Colo/diagnóstico por imagem , Neoplasias do Colo/tratamento farmacológico
4.
J Nanobiotechnology ; 22(1): 92, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443940

RESUMO

BACKGROUND: Gold nanoparticles (GNPs) have been extensively recognized as an active candidate for a large variety of biomedical applications. However, the clinical conversion of specific types of GNPs has been hindered due to their potential liver toxicity. The origin of their hepatotoxicity and the underlying key factors are still ambiguous. Because the size, shape, and surfactant of GNPs all affect their properties and cytotoxicity. An effective and sensitive platform that can provide deep insights into the cause of GNPs' hepatotoxicity in vitro is therefore highly desired. METHODS: Here, hepatocyte organoid models (Hep-orgs) were constructed to evaluate the shape-dependent hepatotoxicity of GNPs. Two types of GNPs with different nanomorphology, gold nanospheres (GNSs) and spiny gold nanobranches (GNBs), were synthesized as the representative samples. Their shape-dependent effects on mice Hep-orgs' morphology, cellular cytoskeletal structure, mitochondrial structure, oxidative stress, and metabolism were carefully investigated. RESULTS: The results showed that GNBs with higher spikiness and tip curvature exhibited more significant cytotoxicity compared to the rounded GNSs. The spike structure of GNBs leads to a mitochondrial damage, oxidative stress, and metabolic disorder in Hep-orgs. Meanwhile, similar trends can be observed in HepG2 cells and mice models, demonstrating the reliability of the Hep-orgs. CONCLUSIONS: Hep-orgs can serve as an effective platform for exploring the interactions between GNPs and liver cells in a 3D perspective, filling the gap between 2D cell models and animal models. This work further revealed that organoids can be used as an indispensable tool to rapidly screen and explore the toxic mechanism of nanomaterials before considering their biomedical functionalities.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Nanopartículas Metálicas , Animais , Camundongos , Ouro/toxicidade , Nanopartículas Metálicas/toxicidade , Reprodutibilidade dos Testes , Modelos Animais de Doenças , Hepatócitos , Organoides
5.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(3): 339-344, 2024 Mar 10.
Artigo em Chinês | MEDLINE | ID: mdl-38448026

RESUMO

OBJECTIVE: To explore the clinical and genetic characteristics of a neonate with Microvillus inclusion disease (MVID). METHODS: A neonate with MVID admitted to the First Affiliated Hospital of Zhengzhou University in May 2019 was selected as the study subject. Clinical data were collected. Whole exome sequencing (WES) was carried out, and candidate variants were verified by Sanger sequencing and multiple ligation-dependent probe amplification (MLPA). A literature was also carried out to summarize the clinical and genetic characteristics of MVID. RESULTS: The prematurely born neonate had presented with unexplained refractory diarrhea and metabolic acidosis. Active symptomatic treatment was ineffective, and the child had died at 2 months old. WES revealed that he had harbored compound heterozygous variants of the MYO5B gene, namely c.1591C>T (p.R531W) and deletion of exon 9. Sanger sequencing showed that the R531W variant was inherited form his father, and MLPA confirmed that the exon 9 deletion was inherited from his mother. Seven children with MVID were reported in China, of which one was lost during follow-up and six had deceased. One hundred eighty eight patients were reported worldwide and only one was cured. The clinical features of MVID had included refractory diarrhea, metabolic acidosis and poor prognosis. CONCLUSION: The child was diagnosed with MVID due to the compound heterozygous variants of the MYO5B gene, which has provided a basis for genetic counseling and prenatal diagnosis.


Assuntos
Acidose , Síndromes de Malabsorção , Microvilosidades , Mucolipidoses , Miosina Tipo V , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Gravidez , Diarreia/genética , Síndromes de Malabsorção/genética , Microvilosidades/patologia , Mucolipidoses/genética , Cadeias Pesadas de Miosina , Miosina Tipo V/genética
6.
Acta Biomater ; 177: 431-443, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38307478

RESUMO

The noble metal NPs that are currently applied to photothermal therapy (PTT) have their photoexcitation location mainly in the NIR-I range, and the low tissue penetration limits their therapeutic effect. The complexity of the tumor microenvironment (TME) makes it difficult to inhibit tumor growth completely with a single therapy. Although TME has a high level of H2O2, the intratumor H2O2 content is still insufficient to catalyze the generation of sufficient hydroxide radicals (‧OH) to achieve satisfactory therapeutic effects. The AuPd-GOx-HA (APGH) was obtained from AuPd bimetallic nanodumbbells modified by glucose oxidase (GOx) and hyaluronic acid (HA) for photothermal enhancement of tumor starvation and cascade catalytic therapy in the NIR-II region. The CAT-like activity of AuPd alleviates tumor hypoxia by catalyzing the decomposition of H2O2 into O2. The GOx-mediated intratumoral glucose oxidation on the one hand can block the supply of energy and nutrients essential for tumor growth, leading to tumor starvation. On the other hand, the generated H2O2 can continuously supply local O2, which also exacerbates glucose depletion. The peroxidase-like activity of bimetallic AuPd can catalyze the production of toxic ‧OH radicals from H2O2, enabling cascade catalytic therapy. In addition, the high photothermal conversion efficiency (η = 50.7 %) of APGH nanosystems offers the possibility of photothermal imaging-guided photothermal therapy. The results of cell and animal experiments verified that APGH has good biosafety, tumor targeting, and anticancer effects, and is a precious metal nanotherapeutic system integrating glucose starvation therapy, nano enzyme cascade catalytic therapy, and PTT therapy. This study provides a strategy for photothermal-cascade catalytic synergistic therapy combining both exogenous and endogenous processes. STATEMENT OF SIGNIFICANCE: AuPd-GOx-HA cascade nanoenzymes were prepared as a potent cascade catalytic therapeutic agent, which enhanced glucose depletion, exacerbated tumor starvation and promoted cancer cell apoptosis by increasing ROS production through APGH-like POD activity. The designed system has promising photothermal conversion ability in the NIR-II region, simultaneously realizing photothermal-enhanced catalysis, PTT, and catalysis/PTT synergistic therapy both in vitro and in vivo. The present work provides an approach for designing and developing catalytic-photothermal therapies based on bimetallic nanoenzymatic cascades.


Assuntos
Peróxido de Hidrogênio , Neoplasias , Animais , Terapia Fototérmica , Catálise , Glucose , Glucose Oxidase , Neoplasias/terapia , Linhagem Celular Tumoral , Microambiente Tumoral
7.
ACS Appl Mater Interfaces ; 16(6): 7732-7741, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38306189

RESUMO

The implementation of passive cooling strategies is crucial for transitioning from the current high-power- and energy-intensive thermal management practices to more environmentally friendly and carbon-neutral alternatives. Among the various approaches, developing thermal management materials with high thermal conductivity and emissivity for effective cooling of personal and wearable devices in both indoor and outdoor settings poses significant challenges. In this study, we successfully fabricated a cooling patch by combining biodegradable silk fibroin with boron nitride nanosheets. This patch exhibits consistent heat dissipation capabilities under different ambient conditions. Leveraging its excellent radiative cooling efficiency (Rsolar = 0.89 and εLWIR = 0.84) and high thermal conductivity (in-plane 27.58 W m-1 K-1 and out-plane 1.77 W m-1 K-1), the cooling patch achieves significant simulated skin temperature reductions of approximately 2.5 and 8.2 °C in outdoor and indoor conditions, respectively. Furthermore, the film demonstrates excellent biosafety and can be recycled and reused for at least three months. This innovative BNNS/SF film holds great potential for advancing the field of personal thermal management materials.

8.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(2): 193-198, 2024 Feb 10.
Artigo em Chinês | MEDLINE | ID: mdl-38311558

RESUMO

OBJECTIVE: To explore the genetic etiology of a child with delayed growth and development and carry out a literature review. METHODS: A child suspected for Al Kaissi syndrome at the First Affiliated Hospital of Zhengzhou University on March 6, 2021 was selected as the study subject. Following extraction of genomic DNA, the child was subjected to copy number variation sequencing (CNV-seq) and whole exome sequencing (WES), and candidate variants were verified by PCR-agarose gel electrophoresis and quantitative real-time PCR (qPCR). Prenatal diagnosis was conducted on chorionic villi sample upon subsequent pregnancy. RESULTS: The child, a 6-year-and-4-month-old boy, has dysmorphic features including low-set protruding ears and triangular face, delayed language and intellectual development, and ventricular septal defect. CNV-seq result has found no obvious abnormality, whilst WES revealed homozygous deletion of exons 1 and 2 of the CDK10 gene, which was confirmed by PCR-agarose gel electrophoresis and qPCR. Both of his parents were heterozygous carriers. Prenatal diagnosis using chorionic villi samples suggested that the fetus also carried the heterozygous deletion. CONCLUSION: The clinical features of Al Kaissi syndrome in this child can probably be attributed to the homozygous deletion of exons 1 and 2 of the CDK10 gene.


Assuntos
Variações do Número de Cópias de DNA , Diagnóstico Pré-Natal , Criança , Feminino , Humanos , Masculino , Gravidez , Quinases Ciclina-Dependentes/genética , Éxons , Homozigoto , Deleção de Sequência
9.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(2): 140-144, 2024 Feb 10.
Artigo em Chinês | MEDLINE | ID: mdl-38311550

RESUMO

OBJECTIVE: To analyze the clinical and genetic characteristics of ten Chinese pedigrees affected with 7q11.23 duplication syndrome. METHODS: From December 2017 to January 2022, ten pedigrees diagnosed with 7q11.23 duplication syndrome at the First Affiliated Hospital of Zhengzhou University were enrolled as the study subjects. Clinical data of all subjects were collected, and some had subjected to copy number variation sequencing or single nucleotide polymorphism array to analyze the pattern of inheritance. RESULTS: The probands had included six fetuses and four adolescents. Four of the six prenatal cases showed abnormal ultrasound indicators, including three with soft indicators and one with abnormal fetal structural development. The clinical phenotype of the four adolescent cases had included mental retardation, delayed language development, and attention deficit hyperactivity disorder. The size of the copy number variations had ranged from 1.31 to 1.42 Mb, involving the classic region of 7q11.23 duplication syndrome. Of these, five cases had undergone parental origin testing, three cases were de novo, and two were hereditary. CONCLUSION: Individuals with 7q11.23 duplication syndrome may show substantial clinical phenotypic heterogeneity, hence the affected families should be provided with pre-pregnancy consultation and reproductive guidance.


Assuntos
Variações do Número de Cópias de DNA , Deficiência Intelectual , Gravidez , Feminino , Adolescente , Humanos , Linhagem , Deficiência Intelectual/genética , Síndrome , China
10.
Am J Med Genet A ; : e63560, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329169

RESUMO

The study is to explore the feasibility and value of SNP-based noninvasive prenatal diagnosis (NIPD) for facioscapulohumeral muscular dystrophy type 1 (FSHD1) in early pregnancy weeks. We prospectively collected seven FSHD1 families, with an average gestational age of 8+6 . Among these seven couples, there were three affected FSHD1 mothers and four affected fathers. A multiplex-PCR panel comprising 402 amplicons was designed to selective enrich for highly heterozygous SNPs upstream of the DUX4 gene. Risk haplotype was constructed based on familial linkage analysis. Fetal genotypes were accurately inferred through relative haplotype dosage analysis using Bayes Factor. All tests were successfully completed in a single attempt, and no recombination events were detected. NIPD results were provided within a week, which is 4 weeks earlier than karyomapping and 7 weeks earlier than Bionano single-molecule optical mapping (BOM). Ultimately, five FSHD1 fetuses and two normal fetuses were successfully identified, with a 100% concordance rate with karyomapping and BOM. Therefore, SNP-based NIPD for FSHD1 was demonstrated to be feasible and accurate in early weeks of gestation, although the risk of recombination events cannot be completely eliminated. In the future, testing of more cases is still necessary to fully determine the clinical utility.

11.
J Am Chem Soc ; 146(10): 6536-6543, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38412553

RESUMO

The past decade has witnessed substantial progress in understanding nontrivial band topology and discovering exotic topological materials in condensed-matter physics. Recently, topological physics has been further extended to the chemistry discipline, leading to the emergence of topological catalysis. In principle, the topological effect is detectable in catalytic reactions, but no conclusive evidence has been reported yet. Herein, by precisely manipulating the topological surface state (TSS) of Bi2Se3 nanosheets through thickness control and the application of a magnetic field, we provide direct experimental evidence to illustrate topological catalysis for CO2 electroreduction. With and without the cooperation of TSS, CO2 is mainly reduced into liquid fuels (HCOOH and H2C2O4) and CO, exhibiting high (up to 90% at -1.1 V versus reversible hydrogen electrode) and low Faradaic efficiency (FE), respectively. Theoretically, the product and FE difference can be attributed to the TSS-regulated adsorption of key intermediates and the reduced barrier of the potential-determining step. Our work demonstrates the inherent correlation between band topology and electrocatalysis, paving a new avenue for designing high-performance catalysts.

12.
Clin Genet ; 105(1): 52-61, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37822034

RESUMO

Haplotype-based noninvasive prenatal diagnosis (NIPD) is applicable for various recessive single-gene disorders in proband families. However, a comprehensive exploration of critical factors influencing the assay performance, such as fetal fraction, informative single nucleotide polymorphism (SNP) count, and recombination events, has yet to be performed. It is critical to identify key factors affecting NIPD performance, including its accuracy and success rate, and their impact on clinical diagnostics to guide clinical practice. We conducted a prospective study, recruiting 219 proband families with singleton pregnancies at risk for eight recessive single-gene disorders (Duchenne muscular dystrophy, spinal muscular atrophy, phenylketonuria, methylmalonic acidemia, hemophilia A, hemophilia B, non-syndromic hearing loss, and congenital adrenal hyperplasia) at 7-14 weeks of gestation. Haplotype-based NIPD was performed by evaluating the relative haplotype dosage (RHDO) in maternal circulation, and the results were validated via invasive prenatal diagnosis or newborn follow-ups. Among the 219 families, the median gestational age at first blood draw was 8+5 weeks. Initial testing succeeded for 190 families and failed for 29 due to low fetal fraction (16), insufficient informative SNPs (9), and homologous recombination near pathogenic variation (4). Among low fetal fraction families, successful testing was achieved for 11 cases after a redraw, while 5 remained inconclusive. Test failures linked to insufficient informative SNPs correlated with linkage disequilibrium near the genes, with F8 and MMUT exhibiting the highest associated failure rates (14.3% and 25%, respectively). Homologous recombination was relatively frequent around the DMD and SMN1 genes (8.8% and 4.8%, respectively) but led to detection failure in only 44.4% (4/9) of such cases. All NIPD results from the 201 successful families were consistent with invasive diagnostic findings or newborn follow-up. Fetal fraction, informative SNPs count, and homologous recombination are pivotal to NIPD performance. Redrawing blood effectively improves the success rate for low fetal fraction samples. However, informative SNPs count and homologous recombination rates vary significantly across genes, necessitating careful consideration in clinical practice. We have designed an in silico method based on linkage disequilibrium data to predict the number of informative SNPs. This can identify genomic regions where there might be an insufficient number of SNPs, thereby guiding panel design. With these factors properly accounted for, NIPD is highly accurate and reliable.


Assuntos
Distrofia Muscular de Duchenne , Teste Pré-Natal não Invasivo , Gravidez , Feminino , Recém-Nascido , Humanos , Lactente , Teste Pré-Natal não Invasivo/métodos , Haplótipos/genética , Estudos Prospectivos , Diagnóstico Pré-Natal/métodos , Distrofia Muscular de Duchenne/diagnóstico
13.
BMC Med Genomics ; 16(1): 310, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38041114

RESUMO

OBJECTIVE: This study is a retrospective analysis of the prenatal genetic diagnosis results of 1408 foetuses at high risk of DMD/BMD to provide information for clinical genetic counselling. BACKGROUND: Duchenne muscular dystrophy (DMD) is a severe neuromuscular disorder characterized by skeletal and cardiac muscle weakness. With the deepening of disease research, some treatments have been applied in clinics. Therefore, early and accurate prenatal diagnosis can inform pregnancy choices for high-risk families. METHODS: A total of 1316 unrelated DMD/BMD families with confirmed genetic diagnoses were recruited from the Genetic and Prenatal Diagnosis Center of the First Affiliated Hospital of Zhengzhou University. Prenatal diagnosis of 1408 high-risk foetuses was performed by MLPA and Sanger sequencing combined with STR linkage analysis for all families. RESULTS: Among the 1316 families, large deletions, duplications, and small variants of the DMD gene accounted for 70.4% (927/1316), 8.2% (108/1316), and 21.4% (281/1316), respectively. Among 1316 mothers, 863 (65.6%) were carriers, and 453 (34.4%) were not carriers. The rate of de novo variants was 34.4% (453/1316) in our study. In addition, gonadal mosaicism was observed in 11 pregnant females. Prenatal diagnosis was provided for 1408 high-risk foetuses; 282 foetuses were identified as male patients, 219 foetuses were female carriers, and the remainder had normal genetics. The results of prenatal diagnosis were consistent with the results of follow-up. CONCLUSIONS: Accurate and rapid prenatal diagnosis can be achieved using MLPA, Sanger sequencing, and STR linkage analysis. Furthermore, germline mosaicism in DMD should not be ignored; considering this, a prenatal diagnosis for all pregnant women with a family history of DMD/BMD regardless of whether they carried disease-causing variants is proposed. Genetic counselling and targeted prenatal diagnosis will continue to be a cornerstone of DMD/BMD family management in the future.


Assuntos
Reação em Cadeia da Polimerase Multiplex , Distrofia Muscular de Duchenne , Humanos , Masculino , Feminino , Gravidez , Estudos Retrospectivos , Éxons , Diagnóstico Pré-Natal/métodos , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/genética , Feto
14.
Prenat Diagn ; 43(12): 1544-1555, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37957774

RESUMO

BACKGROUND: Early diagnosis and intervention are crucial for the prognosis of methylmalonic acidemia (MMA). However, research focused on early prenatal diagnosis of MMA is limited. METHODS: A 161.89kb capture panel was designed for selectively enriching highly heterozygous SNPs. Fetal genotypes were inferred using relative haplotype dosage (RHDO) and Bayes factor, followed by invasive prenatal diagnosis (IPD) for validation. A core pathogenic haplotype associated with c.609G>A was identified based on the frequency differences between pathogenic and normal haplotypes. RESULTS: We recruited 41 pregnancies at risk of MMA with a median gestational age of 8+2  weeks. The assay success rate of NIPD-MMA for maternal variants was 92.7% (38/41), and after incorporating the paternal result, the overall assay success rate reached 100% (41/41). All NIPD results were concordant with IPD. Notably, a core haplotype (hap_2), comprising 28 SNPs, demonstrates significant enrichment within pathogenic haplotypes bearing the c.609G>A variation. On average, c.609G>A carriers had 22.38 heterozygous loci within these 28 SNPs. CONCLUSION: NIPD-MMA presents a viable choice for early, accurate, and safe prenatal diagnosis. Furthermore, the discovery of the recurrent core pathogenic haplotype provides a novel approach for haplotype phasing and has the potential for realizing proband-independent NIPD in the future.


Assuntos
Teste Pré-Natal não Invasivo , Gravidez , Feminino , Humanos , Lactente , Teste Pré-Natal não Invasivo/métodos , Haplótipos , Teorema de Bayes , Diagnóstico Pré-Natal/métodos
15.
Sensors (Basel) ; 23(21)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37960633

RESUMO

The global burden of cancer is increasing rapidly, and nanomedicine offers promising prospects for enhancing the life expectancy of cancer patients. Janus nanoparticles (JNPs) have garnered considerable attention due to their asymmetric geometry, enabling multifunctionality in drug delivery and theranostics. However, achieving precise control over the self-assembly of JNPs in solution at the nanoscale level poses significant challenges. Herein, a low-temperature reversed-phase microemulsion system was used to obtain homogenous Mn3O4-Ag2S JNPs, which showed significant potential in cancer theranostics. Structural characterization revealed that the Ag2S (5-10 nm) part was uniformly deposited on a specific surface of Mn3O4 to form a Mn3O4-Ag2S Janus morphology. Compared to the single-component Mn3O4 and Ag2S particles, the fabricated Mn3O4-Ag2S JNPs exhibited satisfactory biocompatibility and therapeutic performance. Novel diagnostic and therapeutic nanoplatforms can be guided using the magnetic component in JNPs, which is revealed as an excellent T1 contrast enhancement agent in magnetic resonance imaging (MRI) with multiple functions, such as photo-induced regulation of the tumor microenvironment via producing reactive oxygen species and second near-infrared region (NIR-II) photothermal excitation for in vitro tumor-killing effects. The prime antibacterial and promising theranostics results demonstrate the extensive potential of the designed photo-responsive Mn3O4-Ag2S JNPs for biomedical applications.


Assuntos
Nanopartículas Multifuncionais , Nanopartículas , Neoplasias , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Nanomedicina , Sistemas de Liberação de Medicamentos , Meios de Contraste , Imageamento por Ressonância Magnética/métodos , Nanopartículas/química , Nanomedicina Teranóstica/métodos , Microambiente Tumoral
16.
J Anim Sci Biotechnol ; 14(1): 150, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001525

RESUMO

BACKGROUND: Domestic goose breeds are descended from either the Swan goose (Anser cygnoides) or the Greylag goose (Anser anser), exhibiting variations in body size, reproductive performance, egg production, feather color, and other phenotypic traits. Constructing a pan-genome facilitates a thorough identification of genetic variations, thereby deepening our comprehension of the molecular mechanisms underlying genetic diversity and phenotypic variability. RESULTS: To comprehensively facilitate population genomic and pan-genomic analyses in geese, we embarked on the task of 659 geese whole genome resequencing data and compiling a database of 155 RNA-seq samples. By constructing the pan-genome for geese, we generated non-reference contigs totaling 612 Mb, unveiling a collection of 2,813 novel genes and pinpointing 15,567 core genes, 1,324 softcore genes, 2,734 shell genes, and 878 cloud genes in goose genomes. Furthermore, we detected an 81.97 Mb genomic region showing signs of genome selection, encompassing the TGFBR2 gene correlated with variations in body weight among geese. Genome-wide association studies utilizing single nucleotide polymorphisms (SNPs) and presence-absence variation revealed significant genomic associations with various goose meat quality, reproductive, and body composition traits. For instance, a gene encoding the SVEP1 protein was linked to carcass oblique length, and a distinct gene-CDS haplotype of the SVEP1 gene exhibited an association with carcass oblique length. Notably, the pan-genome analysis revealed enrichment of variable genes in the "hair follicle maturation" Gene Ontology term, potentially linked to the selection of feather-related traits in geese. A gene presence-absence variation analysis suggested a reduced frequency of genes associated with "regulation of heart contraction" in domesticated geese compared to their wild counterparts. Our study provided novel insights into gene expression features and functions by integrating gene expression patterns across multiple organs and tissues in geese and analyzing population variation. CONCLUSION: This accomplishment originates from the discernment of a multitude of selection signals and candidate genes associated with a wide array of traits, thereby markedly enhancing our understanding of the processes underlying domestication and breeding in geese. Moreover, assembling the pan-genome for geese has yielded a comprehensive apprehension of the goose genome, establishing it as an indispensable asset poised to offer innovative viewpoints and make substantial contributions to future geese breeding initiatives.

17.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(12): 1451-1454, 2023 Dec 10.
Artigo em Chinês | MEDLINE | ID: mdl-37994122

RESUMO

OBJECTIVE: To explore the cause for a twin pregnancy with false negative result for 22q11.2 deletion syndrome by expanded non-invasive prenatal testing (NIPT-plus). METHODS: A pregnant woman with twin pregnancy through in-vitro fertilization and negative result of NIPT-plus was selected as the study subject. Amniocentesis was conducted after ultrasonic finding of fetal abnormalities. In addition to conventional G-banded karyotyping, copy number variation sequencing (CNV-Seq) was used to detect chromosomal microdeletion and microduplication. Clinical data of the woman were analyzed to explore the reasons underlying the false negative result. RESULTS: NIPT-plus has yielded a negative result with 11.77 Mb unique reads and 3.05% fetal fraction. Both fetuses had a normal karyotype (46,XY and 46,XX). CNV-seq indicated that one of the fetuses was normal, whilst the other was diagnosed with a 2.58 Mb deletion in the 22q11.2 region. CONCLUSION: The false negative result may be attributed to the combined influence of low fetal fraction, high BMI, twin pregnancy through IVF and a relatively small deletion fragment. Ultrasonography exam following a low-risk result of NIPT-plus should not be neglected.


Assuntos
Síndrome de DiGeorge , Diagnóstico Pré-Natal , Gravidez , Feminino , Humanos , Gravidez de Gêmeos/genética , Síndrome de DiGeorge/diagnóstico , Síndrome de DiGeorge/genética , Variações do Número de Cópias de DNA , Amniocentese
18.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(11): 1356-1359, 2023 Nov 10.
Artigo em Chinês | MEDLINE | ID: mdl-37906141

RESUMO

OBJECTIVE: To analysis variants of COL4A5 gene in two Chinese pedigrees affected with Alport syndrome (AS) and provide prenatal diagnosis for them. METHODS: Two unrelated ethnic Han Chinese pedigrees who had visited the First Affiliated Hospital of Zhengzhou University respectively in September 2018 and January 2020 were selected as the study subjects. Clinical data were collected, and genomic DNA was extracted from peripheral venous blood and amniotic fluid samples for genetic testing. Following next generation sequencing, candidate variants of the COL4A5 gene were verified by Sanger sequencing and bioinformatic analysis. The gender of the fetuses was determined by the presence of sex-determining region on Y (SRY). RESULTS: Genetic testing revealed that the proband and a fetus from pedigree 1 had both harbored a c.2723G>A (p.Gly908Glu) variant in exon 32 of the COL4A5 gene, whilst the proband and a fetus from pedigree 2 had both harbored a c.3817G>A (p.Gly1273Asp) variant in exon 44 of the COL4A5 gene. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), both variants were classified as likely pathogenic (PP2+PM2_Supporting). Following exclusion of maternal contamination, PCR amplification of the SRY region indicated that both fetuses were males. CONCLUSION: The c.2723G>A (p.Gly908Glu) and c.3817G>A (p.Gly1273Asp) variants of the COL4A5 gene probably underlay the AS in the two pedigrees. Detection of the SRY region can reliably identify the fetal sex, which is conducive to the prenatal diagnosis. Above results have also enriched the mutational spectrum of the COL4A5 gene and provided a reference for correlating the genotype and phenotype of the AS.


Assuntos
Nefrite Hereditária , Feminino , Humanos , Masculino , Gravidez , Colágeno Tipo IV/genética , População do Leste Asiático , Testes Genéticos , Nefrite Hereditária/diagnóstico , Nefrite Hereditária/genética , Linhagem , Diagnóstico Pré-Natal
19.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(11): 1367-1372, 2023 Nov 10.
Artigo em Chinês | MEDLINE | ID: mdl-37906143

RESUMO

OBJECTIVE: To explore the genetic basis for a Chinese pedigree featuring congenital profound syndromic deafness and chronic constipation, and provide prenatal diagnosis for a high-risk fetus. METHODS: Whole-exome sequencing was carried out to analyze the sequences of genes associated with hereditary deafness, and multiplex ligation-dependent probe amplification (MLPA) was used to verify the candidate variant in the proband's parents and the fetus. RESULTS: The proband was found to have harbored a heterozygous deletion of SOX10, a pathogenic gene associated with Waardenburg syndrome type 4C (WS4C). The same deletion was found in her mother (with profound syndromic deafness and chronic constipation) and the fetus, but not in her father with normal hearing. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG) and Association for Molecular Pathology (AMP), the SOX10 gene deletion was predicted to be a pathogenic variant (PVS1+PM2_Supporting+PP1+PP4). CONCLUSION: The pedigree was diagnosed with WS4C, which has conformed to an autosomal dominant inheritance. Deletion of the entire SOX10 gene, as a loss-of-function variant, probably underlay its pathogenesis. Above finding has facilitated genetic counseling and prenatal diagnosis for this family.


Assuntos
Surdez , Perda Auditiva Neurossensorial , Síndrome de Waardenburg , Humanos , Feminino , Gravidez , Linhagem , Síndrome de Waardenburg/diagnóstico , Síndrome de Waardenburg/genética , População do Leste Asiático , Testes Genéticos , Diagnóstico Pré-Natal , Perda Auditiva Neurossensorial/genética , Surdez/genética , Mães , Constipação Intestinal/genética , Mutação , Fatores de Transcrição SOXE/genética
20.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(11): 1373-1376, 2023 Nov 10.
Artigo em Chinês | MEDLINE | ID: mdl-37906144

RESUMO

OBJECTIVE: To explore the genetic basis for a fetus with multiple malformations. METHODS: Clinical data of the fetus was collected, Amniotic fluid sample of the fetus was subjected to conventional G-banded karyotyping, low-depth whole genome copy number variants detection and whole exome sequencing (WES). Candidate variant was verified by Sanger sequencing of the fetus and its parents. RESULTS: Prenatal ultrasound scan at 21+5 gestational weeks had revealed increased nuchal thickness (9.0 mm), enhanced echos of bilateral renal parenchyma, seroperitoneum, left pleural effusion and right displacement of the heart. The mother had a previous history of terminated pregnancy for multiple fetal anomalies. No abnormality was found by conventional karyotyping and CNV analysis, though WES revealed that the fetus has harbored a de novo heterozygous c.607C>T (p.Arg203Trp) variant of the ACS1 gene (NM_018026.3), and the result was validated by Sanger sequencing. CONCLUSION: Through WES and prenatal ultrasonography, the fetus was diagnosed with Schuurs-Hoeijmakers syndrome due to the heterozygous c.607C>T (p.Arg203Trp) variant of the PACS1 gene (NM_018026.3). For fetuses with multiple malformations, WES can help to reveal the genetic etiology when CNV result is negative.


Assuntos
Anormalidades Múltiplas , Diagnóstico Pré-Natal , Feminino , Gravidez , Humanos , Ultrassonografia Pré-Natal , Síndrome , Feto , Proteínas de Transporte Vesicular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...